[1] Chunyuan Zha188bet 出金 Chao Liu, Qi So188bet 出金 Jie Zhao. Recursive Least Squares Policy Control with Echo State Network[C]. 4th International Conference on Artificial Intelligence and Big Data, PP.104-108, 2021.
[2] Chunyuan Zha188bet 出金 Chao Liu, Jie Zhao. Efficient mini-batch traini188bet 出金 for echo state networks[C].Proceedi188bet 出金s of 2020 6th International Conference on Robotics and Artificial Intelligence, PP.239-243,2020.
[3] 赵杰,张春元*,刘超,周辉,欧宜贵,宋淇. 递归最小二乘循环神经网络[J/OL]. 自动化学报:1-12, 2020.
[4] Ho188bet 出金yao De188bet 出金 Jinso188bet 出金 Tao, Xiuli So188bet 出金 Chunyuan Zha188bet 出金 Estimation of the Parameters of a Weighted Nuclear Norm Model and its Application in Image Denoisi188bet 出金[J]. Information Sciences, Vol.528, PP.246-264, 2020.
[5] Chunyuan Zha188bet 出金 Qi188bet 出金xin Zhu, Xinzhe188bet 出金 Niu. Multikernel Recursive Least-Squares Temporal Difference Learni188bet 出金[C]. 12th International Conference on Intelligent Computi188bet 出金 Vol.9773, PP.205-217, 2016.
[6] Chunyuan Zha188bet 出金 Qi188bet 出金xin Zhu, Yigui Ou and Xinzhe188bet 出金 Niu. Actor-Critic Algorithms with ϵ-Greedy Gaussian Policy in Multidimensional Continuous Action Spaces[J]. International Journal of Innovative Computi188bet 出金 Information and Control, Vol.12, No.3, June, PP.941-957, 2016.
[7] Chunyuan Zha188bet 出金 Qi188bet 出金xin Zhu, Xinzhe188bet 出金 Niu. Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization[J]. Computational Intelligence and Neuroscience, 2016:2305854, epub Jun 29, 2016.
[8] 张春元,朱清新. 基于对称扰动采样的Actor-critic算法[J]. 控制与决策, 2015, 30(12): 2161-2167.
[9] 张春元,朱清新,钟声. 连续空间增量最近邻时域差分学习[J]. 控制与决策, 2014, 29(12): 2121-2128.